

THE MUSIC21 STREAM: A NEW OBJECT MODEL FOR

REPRESENTING, FILTERING, AND TRANSFORMING

SYMBOLIC MUSICAL STRUCTURES

Christopher Ariza Michael Scott Cuthbert

Music and Theater Arts Section

Massachusetts Institute of Technology

ABSTRACT

The Stream is a new object model of symbolic musical

structures deployed as part of the music21 toolkit for

computational musicology. Streams are containers that

allow for multiple hierarchical and flat representations

of a musical work. This flexibility avoids the pitfalls of

existing tree-based and event-list-based models and al-

lows for easy searching, discovery of the context of an

object (such as a note’s current clef), and transformation

(such as transposition or duration stretching). This paper

describes the music21 Stream, and offers several exam-

ples to show how this multivalent representation is nec-

essary for researchers working on problems in com-

puter-aided musical analysis.

1. INTRODUCTION

Symbolic musical data is messy. While a note is easily

translated into a single parameterized event, a staccato

note in a measure in a part, tied from a previous measure

and in the middle of a slur (that is, conceived as repre-

sented in a score) is a much more difficult entity to rep-

resent as a data structure. Scores and written notation

hold important information that is too easily lost in sym-

bolic music representations. Symbolic representations

challenge software designers to balance retaining speci-

fication depth with ease of navigation and processing.

All systems for generating and processing musical

structures rely on some fundamental representation of

musical events. Some storage units that appear fre-

quently are event lists and various hierarchical struc-

tures such as trees. While some simple structures (such

as the event-list-based scores and files of Csound and

MIDI) need only associate event parameters with an

instrument, more complex score and notation-based

structures that encode symbolic music necessitate relat-

ing temporally and/or hierarchically distant events.

More than just a data specification, an object model can

store and generalize these relationships at a high-level

with intuitive functionality.

The music21 Stream and its related objects form a

new model for representing and manipulating collec-

tions of complex musical structures. This model (1)

stores, orders, and records the position and duration of

elements, (2) lets the same element appear in different

places in multiple containers (such as in an instrumental

part and a full score), (3) can switch between hierarchi-

cal and flat representations, (4) lets users iterate over

and isolate classes of elements (e.g., clefs, Roman nu-

merals, or rests) that are of particular interest, and (5)

lets searches be aware of their contexts. While other

researchers have addressed conceptual problems in the

design of systems for symbolic music processing be-

yond applications in notation software, none prior to

music21 have put a comprehensive object model into

practice.

The music21 system offers this object model within

an open-source, Python framework. This toolkit is de-

signed for computer-aided musicology and the creation

and manipulation of symbolic music data [4]. The sys-

tem can be used for computational musicology on large

repertories, music information retrieval, data mining and

machine learning, notation editing and manipulation,

and algorithmic composition. The Stream model, the

focus of this paper, is the fundamental container of all

elements in music21. Streams contain numerous other

object models for musical elements (e.g., Notes, Chords,

Clefs) and musical analysis (e.g., RomanNumerals). The

music21 system, in addition to defining these objects,

reads a wide variety of symbolic encodings (e.g., Mu-

sicXML, ABC, Musedata, Humdrum, MIDI), outputs

music notation in MusicXML or Lilypond, and creates

MIDI files. Although the mechanics of data import and

export are not the focus of this presentation, that the

Stream can represent data brought in from such diverse

formats shows its utility and flexibility. More details

about the Stream, including extensive documentation,

are available at mit.edu/music21.

2. HISTORICAL PERSPECTIVES

The importance of hierarchical structures in modeling

musical events and notation elements has been fre-

quently suggested. Lejaren Hiller, for example, claims

that “hierarchical structure is the fundamental architec-

tural principle that makes a musical work into a coher-

ent whole” [7]. Singular dependency on hierarchical

representations, however, can create flawed designs. As

Eleanor Selfridge-Field states, “while it is often conven-

ient for analytical purposes to view music as hierarchi-

cal in nature, it is only within the bounds of certain spe-

cific attributes that musical information can be thought

of as being hierarchical” [14]. For instance, slurs and

cross-staff beams break most hierarchies, and data about

the pitch class distribution of a piece is extracted with-

out regards to any hierarchy. Furthermore, the funda-

mental hierarchy of a piece may be different to the ana-

lyst than to, say, the engraver needing to lay out the

work on a page. Thus, both flat and hierarchical repre-

sentations, as well as representations that cut across the

two, are necessary to model the complexity of actual

scores.

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

61

In one of the first applications of object-oriented de-

sign for musical event structures, Buxton [2] proposes a

model where event lists, as events themselves, can be

deployed in multiple instances at multiple hierarchical

levels. Buxton describes a design, where “each appear-

ance of a particular sub-score constitutes an instance

rather than a master copy of that sub-score,” and further,

“any changes to the original are reflected in each in-

stance” [3]. Combining “arbitrary hierarchical (tree)

structures” with object-oriented deployment of event list

instances adds flexibility to the model. As Buxton notes,

this design gives “the ability to deal with any (user-

defined) sub-set of a score in the same manner, and with

the same ease, as with a single note” [3]. This function-

ality, while just as necessary over thirty years after Bux-

ton wrote, is still not readily available.

Other researchers have implemented similar models

to solve the same problem. Pope [12] describes an

event-list model closely related to that proposed by Bux-

ton and colleagues [4]. In Pope’s model, “event lists are

events themselves and can therefore be nested into

trees… they can also map their properties onto their

component events” and “an event can be ‘shared’ by

being in more than one event list at different relative

start times and with different properties mapped onto it”

[12]. A similar arrangement is found in Daniel Oppen-

heim’s Dmix system, where EventLists are modeled as

collections of TerminalEvents (single events or mes-

sages) or embedded EventLists [11]. The music21

Stream offers closely related functionality, but with a

much broader range of applications.

More recently, numerous musical data storage for-

mats that define hierarchical event and notation struc-

tures have been deployed. MusicXML [5], Musedata

[6], Humdrum/Kern [8], and ABC [11] are examples.

All of these, however, are designed for storage and in-

terchange; none offer a practical object-model with in-

tegrated functionality for manipulating and querying

data. All offer various ways of defining notes, measures,

voices, and parts, yet provide no way to navigate, filter,

or transform these data structures, let alone to parse

them. The music21 object model offers both a represen-

tation and a host of integrated functionality, and does so

in a convenient, powerful, and widely-used program-

ming language.

3. DESIGN FEATURES

The Stream model has already demonstrated its utility in

a variety of research tasks; an example of its power

closes this paper. The focus of this presentation, how-

ever, is on the design, composition, and interaction of

the objects. This paper uses Python examples to demon-

strate critical functionality; assert statements highlight

important values. As code readability is an important

design feature, somewhat extended code excerpts are

provided. To execute the code, import music21 with the

Python statement, “from music21 import *”. All no-

tated output, when provided, is created via music21 Mu-

sicXML output that has been imported into Finale.

3.1. Storing, Ordering, and Timing Elements

The most basic structure for musical events is one that

permits elements (events, parameters, notations) to re-

side in containers. Generally, multiple parallel contain-

ers are deployed to create musical parts. Often, contain-

ers contain sub-containers, such as when measures re-

side in parts, or when voices reside in measures.

The music21 Stream is the common container class

from which all specialized containers are derived. The

Stream itself is a subclass of the Music21Object, which

provides its subclasses with functionality such as

awareness of its location(s) and the ability to be placed

within a Stream. Python objects that are not Mu-

sic21Objects, such as database or web interfaces, may

also be contained in Streams, though they must first be

placed in an ElementWrapper, a Music21Object sub-

class. Since Streams are Music21Objects, they too can

be contained within other Streams. Commonly used

Stream subclasses include Score, Part, and Voice ob-

jects. Figure 1 diagrams the class inheritance of com-

mon music21 objects, and groups them into categories

of containers and elements.

Figure 1. Object inheritance for representative

music21 elements and containers (though containers

are also elements).

Streams are in many ways like Python lists, and store

references to stored objects in a Python list exposed to

the user as elements. Elements in Streams, however, are

not only ordered, but also have a temporal position and

a duration. This permits the order of components in a

Stream to be independent of their conceptual or tempo-

ral position in the score Stream (though by default

Streams are automatically sorted to reduce this potential

complexity). Unlike a list, Streams handle elements po-

sitioned in overlapping and/or simultaneous arrange-

ments. Ordering is handled with Python list-like indices

and associated methods. Timing is measured with off-

sets, floating point values representing distance from the

start of the container. Offsets are generally given in

symbolic quarter length values (e.g., 1.0 is one quarter

note, 2.0 is one half note, 0.25 is one sixteenth note) but

could instead represent time in seconds from a start time

or distance in inches or millimeters from a margin.

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

62

The Music21Object is subclassed for all elements

found in Streams. Nearly all notational entities, both

sounding and non-sounding (e.g., Clef, TimeSignature,

Note, Chord, Mordent, Metadata) are Music21Objects.

A design feature of music21 is that all sounding and

notation elements, from bar lines to instruments, define

a duration (which can be zero) and are positioned in

Streams at specific offsets. For instance, a Metadata

object, specifying a composer’s name, might be posi-

tioned at offset 40.0 with a duration of 60.0, indicating

that only that span was authored by a particular com-

poser. The Music21Object provides instance attributes,

such as id, priority, and activeSite, and is composed

of component objects such as DefinedContexts and Du-

ration.

The DefinedContexts object stores weak references

to objects that are contextually relevant to a Mu-

sic21Object. Some of these objects are locations: weak

references to a container (i.e., a Stream subclass) with

an associated offset. Some of these objects are not loca-

tions, defining simple associations. In Python, weak

references permit storing the name of an object instance

without forcing the object to stay in memory. Thus, if

only weak (and no normal) references to an object exist,

the object will be garbage collected and the weak refer-

ence will return None.

Thus, while a Stream contains references to its com-

ponents stored in the elements list, each component (as

a Music21Object) stores a collection of locations: a

weak reference to a Stream and an offset into that

Stream. A Stream can thus sort each component by ob-

taining the offset relevant to itself. Sorting of simultane-

ous events uses subclass-specified sort order values. For

instance, by default Clefs sort before TimeSignatures,

which in turn sort before Notes.

The Duration object defines a time span over which

a Music21Object is relevant or active. In many cases,

this is the symbolic representation of a notation element

(e.g., a sixteenth note). In other cases, this is the accu-

mulated time of a larger collection of events (e.g., the

span of an entire Stream such as a Measure).

Figure 2 summarizes the types of object composi-

tions and references used in the arrangement of a Note

in a Stream. Dotted lines are weak references, solid lines

are normal references. Closed diamonds are object com-

positions and suggest lifetime responsibility for the

component. Open diamonds are object aggregations and

do not suggest lifetime responsibility. A Note, for ex-

ample, is composed of a Pitch, Duration, and Defined-

Contexts objects (as well as others). A Pitch is com-

posed of an Accidental object. Both Stream and De-

finedContexts objects use object aggregation; they are

not responsible for maintaining the life of their compo-

nents. Streams, however, use references; DefinedCon-

texts use weak references. Thus, the Stream establishes

that the Note is a member of the Stream; the Defined-

Contexts establishes the specific offsets for the Note

within one or more Streams. Further, a Stream can be

deleted and garbage collected regardless of its presence

in a DefinedContexts object, and without deleting its

components (assuming those components are referenced

elsewhere).

Figure 2. Object composition and aggregation using

normal and weak references.

Figure 3 demonstates the basic functionality of

Streams and other Music21Objects, including creating

Note and Metadata objects and positioning Stream sub-

classes (Measure, Part, and Score) within other Streams.

As much as possible, Streams mimic Python list func-

tionality, with added support for handling offsets and

durations. Thus, the append() method adds an element

at the sum of (1) the highest offset and (2) the duration

of the element at that offset; when given elements in a

list, they are appended in succession. The insert()

method permits positioning an element anywhere in the

Stream given an offset. The index(), pop(), and re-

move() methods function similarly to Python lists.

create two half notes and a measure

n1 = note.Note('g3', type='half')

n2 = note.Note('d4', type='half')

cf1 = clef.AltoClef()

m1 = stream.Measure(number=1)

m1.append([n1, n2])

m1.insert(0, cf1)

the measure has three elements

assert len(m1) == 3

the Note's offset is the most-recently set

assert n2.offset == 2.0

this Stream automatic sorts the Clef first

assert m1[0] == cf1

list-like indices follow the sort order

assert m1.index(n2) == 2

find an element based on a given offset

assert m1.getElementAtOrBefore(3.0) == n2

m2 = stream.Measure(number=2)

n3 = note.Note('g#3', quarterLength=0.5)

n4 = note.Note('d-4', quarterLength=3.5)

m2.append([n3, n4])

n4's appended position is after n3

assert n4.offset == .5

assert m2.highestOffset == .5

can access objects on elements, here n4

assert m2[1].duration.quarterLength == 3.5

Stream duration is automatically set

assert m2.duration.quarterLength == 4

p1 = stream.Part()

p1.append([m1, m2])

the part has 2 components

assert len(p1) == 2

assert p1.duration.quarterLength == 8

access Notes from a Part with indices

assert p1[1][0].pitch.nameWithOctave == 'G#3'

or do the same with musical terminology:

assert p1.measure(2).notes[0].name == 'G#'

s1 = stream.Score()

s1.append(p1)

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

63

md1 = metadata.Metadata(title='a score')

s1.insert(0, md1)

calling show renders output

s1.show() # 'musicxml' is the default

Figure 3. Appending, positioning, and getting values

from Streams, as well as rendering MusicXML output.

Figure 4 diagrams the structure built in Figure 3,

showing the hierarchical structure and the overlapping,

timed events found within a single hierarchical level.

Object names are those used in the Python script; offset

positions are relative.

Figure 4. Common composition of music21 objects

(e.g., n1 for a Note, cf1 for a Clef) and Stream

subclasses (e.g., m1 for a Measure, p1 for a Part).

While Figure 3 builds a common hierarchical struc-

ture, such formations are not required in music21. When

requesting an output format that necessitates measures,

parts, and a score, for example, the Stream can build a

copy with elements partitioned into default measures.

3.2. One Element, Multiple Containers

There are numerous conceptual and practical reasons

why an element could simultaneously be in multiple

independent containers, each with a different offset. For

Music21Objects, the DefinedContexts object makes this

possible. The DefinedContexts object can store any

number of locations, each defined by a weak reference

to a Stream and an offset. Thus, a single Note instance

can simultaneously reside in multiple Streams at differ-

ent offsets. Manipulations to the Note’s pitch or dura-

tion in one Stream propagate to all Streams in which

that Note is a member.

Presently, music21 does not permit a Music21Object

to have multiple locations in the same Stream, although

the existing design will, with a few extensions, support

this approach.

Continuing from the previous Python script, Figure 5

positions a single Note in multiple Streams and demon-

strates using the transpose() method to transform the

single instance in-place.

s2 = stream.Stream()

s3 = stream.Stream()

s2.insert(10, n2)

s3.insert(40, n2)

last assigned offset

assert n2.offset == 40

getting a location-specific offset

assert n2.getOffsetBySite(m1) == 2.0

assert n2.getOffsetBySite(s2) == 10

the None site provides a default offset

assert n2.getSites() == [None, m1, s2, s3]

the same instance is found in all Streams

assert m1.hasElement(n2) == True

assert s2.hasElement(n2) == True

assert s3.hasElement(n2) == True

only offset is independent to each location

n2.pitch.transpose('-M2', inPlace=True)

assert s2[s2.index(n2)].nameWithOctave == 'C4'

assert s3[s3.index(n2)].nameWithOctave == 'C4'

assert m1[m1.index(n2)].nameWithOctave == 'C4'

the transposition in the original context

s1.show('musicxml')

Figure 5. Manipulating a note in multiple containers

3.3. Simultaneous Access to Hierarchical and Flat

Representations

Since a Stream can reside in another Stream, the offsets

of a Stream’s components are relative only to their im-

mediate container. For example, a Measure might con-

tain Notes at offsets 0 and 2; the Measure, however,

might be positioned in a Part at offset 8. In order to de-

termine the non-hierarchical, or flat, offset of the com-

ponents, the offset of the container must be added to

each component (resulting in offsets of 8 and 10 in this

example), and this process must be done upward for all

nested containers.

For symbolic music processing, simultaneously hav-

ing both nested and flat structures, and both relative and

non-relative offsets, is extremely important. For exam-

ple, sometimes users may want to navigate through

Notes, solely in the context of a Measure, to find out at

what offset beat two occurs; at other times, users may

want to navigate through Notes in the context of an en-

tire Score to determine how far apart instances of a cer-

tain Chord are found.

Each Stream has a flat property that provides quick

access to an independent, flattened representation of the

Stream. In creating this representation, Music21Objects

are not copied; they are simply inserted into a flat

Stream according to the flat offset values, calculated as

shown above. The flat Stream is sorted by the offset of

each object. Figure 6 demonstrates the flat property,

first with the objects created in the previous examples,

and then by adding a second Part. The getOffsetBy-

Site() method is used to return the offset for the

Stream provided as an argument.

lengths show the number of elements

s1Flat = s1.flat

assert len(s1) == 2

assert len(s1Flat) == 6

assert s1Flat[4] == n3

assert s1Flat[5] == n4

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

64

adding another Part to the Score results in a

different flat representation

n5 = note.Note('a#1', quarterLength=2.5)

n6 = note.Note('b2', quarterLength=1.5)

m3 = stream.Measure(number=1)

m3.append([cf2, r1])

r1 = note.Rest(type='whole')

cf2 = m3.bestClef() # cf2 is a BassClef

m4 = stream.Measure(number=2)

m4.append([n5, n6])

p2 = stream.Part()

p2.append([m3, m4])

s1.insert(0, p2)

objects are sorted by offset

s1Flat = s1.flat

assert len(s1) == 3

assert len(s1Flat) == 10

assert s1Flat[6] == n3

assert s1Flat[7] == n5

assert s1Flat[8] == n4

assert s1Flat[9] == n6

the B in m. 2 (=p2,m4) now has offsets for

both flat non-flat sites

assert n6.getOffsetBySite(m4) == 2.5

assert n6.getOffsetBySite(s1Flat) == 6.5

s1.show()

Figure 6. Access to flat and non-flat representations,

and adding and displaying an additional Part.

3.4. Iterating and Filtering Elements by Class

The music21 system makes great use of subclassing and

class definition to distinguish system components. Each

clef and each ornament type, for example, are given

unique class definitions. As all Music21Objects can

reside on Streams, it is often necessary to filter a Stream

by class, return a new Stream with just the desired Mu-

sic21Objects, and then process the results. As is typical

in object-oriented languages, more general classes, in-

herited by subclasses, can be used for broader filters;

specific class types or lists of classes can be used for

more narrow filters.

For example, a complex polyphonic work might

contain nested Streams defining Parts, Measures, and

Voices, and within these Measures have Clef, TimeSig-

nature, Note, Rest, and Chord objects. If a user needs to

find the distribution of pitch usage, or look for a specific

pitch, iterating over all these elements is unnecessary.

Instead, the getElementsByClass() method on the flat

representation can be used, where a list of desired clas-

ses (Python names or strings) is given. The returned,

independent Stream includes only the matching classes

with offset positions transferred from the source. As

with Python lists, the Stream can be iterated in standard

loop syntax.

Because calls to getElementsByClass(

[note.Note, chord.Chord]) are so common, the notes

property on Streams provides quick access to a new

Stream containing only Note and note-like entities.

Figure 7 demonstrates applications of using getEle-

mentsByClass() and the notes property, iterating over

various collected Music21Objects and gathering infor-

mation or transforming objects.

get the Clef object, and report its sign,

from Measure 1

assert m1.getElementsByClass('Clef')[0].sign ==

'C'

collect into a list the sign of all clefs in

the flat Score

assert [cf.sign for cf in

s1.flat.getElementsByClass('Clef')] == ['C',

'F']

collect the offsets of Measures in the first

part

assert [e.offset for e in p1.elements] == [0.0,

4.0]

collect the offsets of Notes in the first

part after flattening

assert [e.offset for e in p1.flat.notes] ==

[0.0, 2.0, 4.0, 4.5]

get all pitch names

match = []

for e in s1.flat.notes:

 match.append(e.pitch.nameWithOctave)

assert match == ['G3', 'C4', 'G#3', 'A#1', 'D-

4', 'B2']

collect all the Notes using the

getElementsByClass form and transpose them

up a perfect fifth

for n in s1.flat.getElementsByClass('Note'):

 n.transpose('P5', inPlace=True)

s1.show()

Figure 7. Iterating and filtering a Stream by class, and

then displaying the results of transposition applied to

filtered Note objects.

Similar to the Stream returned by the flat property, the

Streams returned by getElementsByClass() and the

notes property offer alternative “views” of the same

Music21Components. Figure 8, expanding the previous

presentations, illustrates references of the same Mu-

sic21Objects in multiple parallel Stream instances, each

retaining relative but independent offset positions.

With the frequent derivation of one Stream from an-

other, by usage of both the flat property as well as by

getElementsByClass() and similar methds, it is useful

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

65

to store and allow access to the chain of previous Stream

forms from which the current Stream is derived The

derivesFrom, derivationChain, and rootDerivation

properties of Streams permit accessing the immediate

ancestor, the complete list of ancestors, and the oldest

ancestor, respectively. In addition, Music21Objects have

a derivationHierarchy property that builds a list of

containers moving upward recursively through the Mu-

sic21Object’s activeSite. For instance, a transposed

Measure object might derive from an existing Measure

object that is contained in a Part. The derivationHier-

archy lets the transposed Measure get information from

that Part.

Figure 8. Simultaneous representation, and procedural

derivation, of the same music21 object instances (e.g.,

n1 for a Note, cf1 for a Clef) in multiple, parallel

Streams.

3.5. Searching Locations by Context

One reason notation-based music representations pose

particular challenges to software processing is due to the

frequent use of incomplete, partial, or context-dependent

symbols and specifications. Clefs and time signatures

are good examples. A clef, specified in the first meas-

ure, is applicable for all subsequent measures, unless a

new clef appears. As with many musical representa-

tions, music21 stores Clef and TimeSignature objects in

Measure objects, and does not require these to be need-

lessly repeated in every measure. Music21, however,

offers powerful tools for elements to search for classes,

either upward, through containers, or up-stream, search-

ing for most recently-encountered objects. Rather than

always having to serially process elements in order, iso-

lated Music21Objects can discover their context.

The getContextByClass() method, available on all

Music21Objects, will first search the activeSite for the

specified classes. If not found, getContextByClass() is

called on each container for each location, and each lo-

cation’s location, recursively until a match is found. The

search process uses getElementAtOrBefore() to return

the first matched class found at or before the offset of

the caller, with offset position determined relative to the

appropriate container. Thus, a note in Measure 8 can

find a Clef change in Measure 2 by first searching its

Measure, then searching the flat Part that contains that

Measure. This mechanism is a sort of backtracking hier-

archical search.

Figure 9 demonstrates how getContextBy-

Class()finds the Clefs and Measures most relevant to a

given Note from a flat Stream. Importantly, the Note

can find the appropriate Clef even when the Note is

moved into a Stream not stored in the overall Score hi-

erarchy. As the DefinedContexts object stores all loca-

tions, including locations in flat Streams, additional pa-

rameters, such as sortByCreationTime='reverse',

need to be provided to force searching oldest locations

first.

a Note can always find its Clef

assert n4.getContextByClass('Clef') == cf1

all Notes can find their Measure numbers

even from a flat Score

match = []

for e in s1.flat.notes:

 match.append([e.name,

 e.getContextByClass('Measure').number])

assert match == [['D', 1], ['G', 1], ['D#', 2],

['E#', 2], ['A-', 2], ['F#', 2]]

Figure 9. Searching Locations by Context

3.6. Spanners and Non-Hierarchical Object Associa-

tions

As stated previously, it is an error to force all object

arrangements into strict hierarchical groupings. Some

musical elements, particularly notational elements, need

to be represented solely as associations between other

elements that may or may not be in the same, nested, or

adjacent containers. Examples include slurs, dynamic

wedge symbols, extended trill marks, piano pedal indi-

cations, and even staff groups. Some systems model

such objects with start and end tags embedded in a

strictly hierarchical structure (e.g., MusicXML), yet

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

66

such approaches require searching, from any member,

backward or forward to find the associated objects.

Music21 borrows the term “spanner” from Lilypond

[9] and, in part, from the “Leaf Container Spanner”

model employed in Abjad [1]. Spanners are Mu-

sic21Objects that store a collection of spanned objects,

called components, that can exist in any hierarchical or

non-hierarchical arrangment.

Internally, the Spanner stores components in a spe-

cialized Stream subclass called SpannerStorage. This

object, unlike other Streams, stores a reference to the

Spanner within which it is instantiated. The Spanner

object provides the interface to SpannerStorage, as typi-

cal Stream functionality may not always have the same

meaning when applied to storing Spanner components.

For example, the offsets of components in a Spanner-

Storage object are irrelevant. However, by storing com-

ponents in a Stream subclass, elements can directly list

all Spanners in which they are components. The Mu-

sic21Object method getSpannerSites() returns all

Spanners for which the object is a component, by simply

looking at the DefinedContexts object for SpannerStor-

age locations, and returning the reference to the Spanner

instance stored in the found SpannerStorage object.

The Python example in Figure 10 demonstrates basic

functionality of Slurs, a Spanner subclass. The getOff-

setSpanBySite() and getDurationSpanBySite() me-

thods can be used to determine the relative offset and

duration span of stored components. These methods

require a site argument, as a Spanner might connect

Music21Objects in different sites. A common site, usu-

ally a flat representation, must exist to find offset and

duration spans.

Spanners positioned in a Part and a Measure

sp1 = spanner.Slur([n1, n4])

p1.append(sp1)

sp2 = spanner.Slur([n5, n6])

m4.insert(0, sp2)

Elements can get their Spanners

assert n1.getSpannerSites() == [sp1]

assert n6.getSpannerSites() == [sp2]

p1Flat = p1.flat

assert sp1.getDurationSpanBySite(p1Flat) ==

[0.0, 8.0]

p2Flat = p2.flat

assert sp2.getDurationSpanBySite(p2Flat) ==

[4.0, 8.0]

s1.show()

Figure 10. Creating a Slurs across Measure boundaries

and realizing their duration span.

4. CASE STUDY

The following demonstration (Figure 11) illustrates the

music21 Stream model’s utility in a more comprehen-

sive example. This example is a typical application of

music21 in the following ways: (1) the code is compact

and highly readable; (2) non-sounding notations can be

examined with the same ease as sounding events; (3) a

general approach that works for one work in one encod-

ing can easily be employed on thousands of works in

many encodings; (4) numerical output, textual output,

and annotated score-based representations can all be

created simultaneously. No other system for symbolic

music manipulation offers all these features in such an

easy-to-use framework.

The example below analyzes the beat location and

the initial pitches of all melismas, that is syllables

spread over multiple notes, in a score, and marks them

with slurs. The example first parses a MusicXML repre-

sentation of a fifteenth-century Gloria by D. Luca,

stored in the integrated music21 corpus (a collection of

works distributed with music21 for immediate experi-

mentation and research). Using a flat representation of

an extracted sub-section of Measures, the code finds all

melismas by looking at pairs of Notes and determining

the spans of Notes after a lyric ends and before a new

Note starts. The code then spans each of them with a

Slur. These slurs are then collected and are used to find

the starting pitch and starting beat of the melisma (each

one in this example happens on the downbeat), as well

as the total duration of each melisma. The starting pitch

and total duration are then printed.

Streams are critical for this procedure because: (1) a

single Part, and a sub-section of Measures within that

part, can be extracted while retaining musical and

notational coherency (appropriate clefs, meters, etc.);

(2) flat and filtered representations of the same Notes

can be iterated over in series to examine pairwise rela-

tionships without altering the hierarchical representa-

tion; (3) elements stored in alternate representations can

be modified, producing changes that are retained in the

source representation; (4) the list-like functionality of

Streams gives easy access to boundary elements.

nStart = None; nEnd = None

ex = corpus.parseWork(

 'luca/gloria').parts['cantus'].measures(

 1,11)

exFlatNotes = ex.flat.notes

nLast = exFlatNotes[-1]

for i, n in enumerate(exFlatNotes):

 if i < len(exFlatNotes) - 1:

 nNext = exFlatNotes[i+1]

 else: continue

 if n.hasLyrics():

 nStart = n

 # if next is a begin, then this is an end

 elif (nStart is not None and

 nNext.hasLyrics() and n.tie is None):

 nEnd = n

 elif nNext is nLast:

 nEnd = n

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

67

 if nStart is not None and nEnd is not None:

 nStart.addLyric(nStart.beatStr)

 ex.insert(spanner.Slur(nStart, nEnd))

 nStart = None; nEnd = None

for sp in ex.spanners:

 dur = sp.getDurationBySite(exFlatNotes)

 n = sp.getFirst()

 print(n.nameWithOctave, dur.quarterLength)

ex.show()

Printed Output:
('D5', 2.0)

('G4', 3.0)

('D5', 3.0)

('A4', 3.0)

('E4', 2.0)

('C4', 3.0)

Figure 11. Counting, analyzing, and annotating

melisma length. The printed output shows the starting

pitch and melisma duration; the notated output shows

the automated addition of slurs over melismas and the

starting beat (in this case, always 1).

5. FUTURE WORK

The Stream model, as a critical component of the mu-

sic21 system, has undergone numerous revisions, ex-

pansions, and performance studies and optimizations.

While it is mature, it might benefit from further refine-

ments.

Presently, Spanners reside in Streams, unattached to

objects. It is possible that optionally attaching Spanners

to Music21Objects may offer organizational benefits.

Also, as stated above, presently the same Mu-

sic21Object instance cannot have multiple locations in

the same Stream. This limit is in place for system sim-

plicity, but, if removed, might offer a valuable increase

in functionality.

6. ACKNOWLEDGEMENTS

Development of the Stream and the music21 toolkit is

conducted as part of a multi-year research project fund-

ed by the Seaver Institute.

7. REFERENCES

[1] Ba!a, T. and V. Adán. 2007. “Cuepatlahto and Las-

caux: two approaches to the formalized control of

musical score.” Available online at

http://www.victoradan.net/media/texts/cuepatlahto-

and-lascaux_.pdf.

[2] Buxton, W. 1978. Design Issues in the Foundation

of a Computer-Based Tool for Music Composition.

Toronto: Technical Report Computer Systems

Research Group.

[3] Buxton, W. and W. Reeves, R. Baecker, L. Mezei.

1978. “The Use of Hierarchy and Instance in a Data

Structure for Computer Music.” Computer Music

Journal 2(4): pp. 10–20.

[4] Cuthbert, M. S., and C. Ariza. 2010. “music21: A

Toolkit for Computer-Aided Musicology and Sym-

bolic Music Data.” Proceedings of the International

Society on Music Information Retrieval, pp. 637–42.

[5] Good, M. 2001. “An Internet-Friendly Format for

Sheet Music.” Proceedings of XML 2001.

[6] Hewlett, W. B. 1997. “Musedata: Multipurpose

Representation.” In E. Selfridge-Field, ed. Beyond

MIDI: the Handbook of Musical Codes. Cambrdige:

MIT Press, pp. 402–447.

[7] Hiller, L. 1981. “Composing with Computers: A

Progress Report.” Computer Music Journal 5(4): pp.

7–21.

[8] Huron, D. 1997. “Humdrum and Kern: Selective

Feature Encoding.” In E. Selfridge-Field, ed.

Beyond MIDI: the Handbook of Musical Codes.

Cambrdige: MIT Press, pp. 375–401.

[9] Nienhuys, H. and J. Nieuwenhuizen. 2003.

“LilyPond, a system for automated music

engraving.” Proceedings of the XIV Colloquium on

Musical Informatics (XIV CIM 2003).

[10] Oppenheim, D. V. 1989. “Dmix: An Environment

for Composition.” Proceedings of the International

Computer Music Conference. San Francisco:

International Computer Music Association, pp. 226–

233.

[11] Oppenheim, I. and C. Walshaw, J. Atchley. 2010.

“The abc standard 2.0.” Available online at

http://abcnotation.com/wiki/abc:standard:v2.0.

[12] Pope, S. T. 1996. “Object-oriented music

representation.” Organised Sound 1(1): pp. 56–68.

[13] Selfridge-Field, E. 1997a. “Beyond Codes: Issues in

Musical Representation.” In E. Selfridge-Field, ed.

Beyond MIDI: the Handbook of Musical Codes.

Cambrdige: MIT Press, pp. 565–572.

[14] Selfridge-Field, E. 1997b. “Introduction: Describing

Musical Information.” In E. Selfridge-Field, ed.

Beyond MIDI: the Handbook of Musical Codes.

Cambridge: MIT Press, pp. 3–38.

Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011

68

